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We investigate the critical behavior of the random-bond �J Ising model on a square lattice at the multi-
critical Nishimori point in the T-p phase diagram, where T is the temperature and p is the disorder parameter
�p=1 corresponds to the pure Ising model�. We perform a finite-size scaling analysis of high-statistics Monte
Carlo simulations along the Nishimori line defined by 2p−1=tanh�1 /T�, along which the multicritical point
lies. The multicritical Nishimori point is located at p�=0.890 81�7�, T�=0.9528�4�, and the renormalization-
group dimensions of the operators that control the multicritical behavior are y1=0.655�15� and y2=0.250�2�;
they correspond to the thermal exponent ��1 /y2=4.00�3� and to the crossover exponent ��y1 /y2=2.62�6�.
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I. INTRODUCTION

The �J Ising model on a square lattice represents an in-
teresting theoretical laboratory in which one can study the
effects of quenched disorder and frustration on the critical
behavior of two-dimensional �2D� spin systems. It is defined
by the lattice Hamiltonian

H = − �
�xy�

Jxy�x�y , �1�

where �x= �1, the sum is over pairs of nearest-neighbor
sites of a square lattice, and the exchange interactions Jxy are
uncorrelated quenched random variables, taking values �J
with probability distribution

P�Jxy� = p��Jxy − J� + �1 − p���Jxy + J� . �2�

In the following we set J=1 without loss of generality. For
p=1 we recover the standard Ising model, while for p=1 /2
we obtain the bimodal Ising spin-glass model. The �J Ising
model is a simplified model �1� for disordered spin systems
showing glassy behavior in some region of their phase dia-
gram. The random nature of the short-ranged interactions is
mimicked by nearest-neighbor random bonds. The 2D �J
Ising model is also interesting for the description of quantum
Hall transitions �2–4�, and for its applications in coding
theory �5–8�.

The T-p phase diagram of the 2D �J Ising model is
sketched in Fig. 1 �it is symmetric for p→1− p and thus we
only report it for 1− p�1 /2�. It has been investigated and
discussed in several works, see, e.g., Refs. �2,5,8–29�. For
sufficiently small values of the probability of antiferromag-
netic bonds, the model presents a paramagnetic phase and a
ferromagnetic phase, separated by a transition line. The
paramagnetic-ferromagnetic �PF� transition line starts at the
Ising point XIs= �T=TIs , p=1�, where TIs=2 / ln�1+	2�
=2.269 19. . . is the critical temperature of the 2D Ising
model, and extends up to the multicritical Nishimori point
�MNP� at XMNP= �T� , p��, with T�
0.95 and p�
0.89.
Along this line, the critical behavior is analogous to that

observed in 2D randomly dilute Ising �RDI� models �30–33�.
It is controlled by the pure Ising fixed point and disorder is
marginally irrelevant, giving rise to universal logarithmic
corrections, as shown in Refs. �33,34�. As argued in Refs.
�35–37�, the MNP is located along the so-called Nishimori
line �N line� �8,38� defined by the equation

tanh � = 2p − 1, �3�

where ��1 /T. As a consequence of the inequality �38�

����x�y�T�� � ����x�y�TN�p��� �4�

�the angular and the square brackets refer, respectively, to the
thermal average and to the quenched average over the bond
couplings �Jxy, while the subscripts indicate the temperature
of the thermal average�, ferromagnetism can only exist in the
region p	 p�, and the system is maximally magnetized along
the N line. This implies that the PF boundary lies in the
region p	 p�. At the MNP the transition line is predicted to
be parallel to the T axis �37�. Then, it reaches the T=0 axis at
Xc= �0, pc�. As a consequence of inequality �4�, pc must sat-
isfy the inequality
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FIG. 1. �Color online� Phase diagram of the square-lattice �J
Ising model in the T-p plane.
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pc 	 p�. �5�

At variance with the three-dimensional case, there is no evi-
dence of a finite-temperature glassy phase. Glassy behavior
is only expected for T=0 and p� pc: the glassy phase at T
=0 is unstable with respect to thermal fluctuations. In Refs.
�8,26,27,29� it was argued that the PF transition line that
connects the MNP to Xc is only related to the frustration
distribution; hence it should not depend on temperature and
should coincide with the line p= p�, so that pc= p�. This ar-
gument provides a good approximation of the phase diagram
below the MNP, although it is not exact. Indeed, numerical
analyses �5,10,12,16,22,24� clearly support a reentrant phase
transition line with pc
 p�. The difference is, however, quite
small, pc− p�
0.006.

The critical behavior along the transition line connecting
the MNP to the T=0 axis is an open issue. Even though it
separates a paramagnetic phase from a ferromagnetic phase,
it seems unlikely that such transitions belong to the same
universality class as the PF transitions that occur on the line
connecting the Ising point to the MNP. They may be of first
order �in this case the MNP would be a tricritical point� or
continuous, but in a different universality class. The glassy
transitions at T=0 and p� pc are expected to belong to the
same universality class as that of the bimodal model with
p=1 /2, see, e.g., Ref. �39� and references therein. It is worth
noting that the point Xc= �0, pc� is a multicritical point: it is
connected to three phases and it is the intersection of two
different transition lines, the PF line at T
0 and the glassy
line at T=0. For T=0 the critical point Xc separates a ferro-
magnetic phase from a glassy phase, while for T
0 the tran-
sition line separates a ferromagnetic from a paramagnetic
phase. Therefore if the line from the MNP to Xc corresponds
to continuous transitions, the critical behavior at T=0 should
differ from that at T
0 along the transition line from the
MNP to Xc. The behavior in a neighborhood of the multicriti-
cal point Xc depends on the nature of the transition. If the PF
transition and the glassy transition are effectively decoupled,
we expect a phase diagram like that reported in Fig. 1. On
the other hand, if the critical modes are coupled at Xc, all
transition lines should be tangent at the multicritical point.
Hence the PF line is expected to by tangent to the glassy
transition line T=0.

Recently, Ref. �17� put forward an interesting conjecture
concerning the location of the MNP in a general class of
models in generic dimension. In the case of the 2D �J
model it predicts the MNP at

Xe � �Te = 0.956 729 . . . ,pe = 0.889 972. . .� . �6�

The available numerical results show that Eq. �6� is a very
good approximation of the location of the MNP; for ex-
ample, the transfer-matrix calculations reported in Refs.
�10,16,18,20� give p�=0.8906�2�, 0.8907�2�, 0.8906�2�,
0.8905�2�, respectively. Actually, since the small difference
p�− pe
0.0006 corresponds at best to approximately three
error bars, these numerical works do not conclusively rule it
out �9�. The conjecture has also been tested on hierarchical
lattices. If is found that it is not exact, although discrepancies
are also in this case numerically small �40,41�.

In this paper we consider the square-lattice �J model,
determine the location of the MNP, and study the critical
behavior in its vicinity. For this purpose, we perform high-
statistics Monte Carlo �MC� simulations along the N line
close to the MNP. We consider lattices of size L2 with 6
�L�64. A detailed finite-size scaling �FSS� analysis allows
us to determine the location of the MNP quite precisely. We
obtain

XMNP = �T� = 0.9528�4�,p� = 0.890 81�7�� . �7�

We determine the renormalization-group �RG� dimensions y1
and y2 of the relevant operators that control the RG flow
close to the MNP. We obtain y1=0.655�15� and y2
=0.250�2�, corresponding to the temperature and crossover
exponents ��1 /y2=4.00�3� and ��y1 /y2=2.62�6�, respec-
tively. Our results confirm that Xe defined in Eq. �6� is a very
good approximation of the MNP location: indeed, p�− pe
=0.000 84�7�. However, they also show that the conjecture
of Ref. �17� leading to Xe is not exact.

The paper is organized as follows. In Sec. II we summa-
rize the theoretical results, focusing in particular on the FSS
behavior expected at the MNP. In Sec. III we present the FSS
analysis of high-statistics MC simulations along the N line.
In Sec. IV we summarize our results and draw our conclu-
sions. In the Appendix we report some notations.

II. FINITE-SIZE SCALING AT THE MULTICRITICAL
POINT

In the absence of external fields, the critical behavior at
the MNP is characterized by two relevant RG operators. The
singular part of the disorder-averaged free energy in a vol-
ume Ld can be written as

Fsing�T,p,L� = L−df�u1Ly1,u2Ly2,�uiL
yi�, i 	 3, �8�

where y1
y2
0, yi�0 for i	3, ui are the corresponding
scaling fields, u1=u2=0 at the MNP, and d is the space di-
mension �d=2 in the present case�. In the infinite-volume
limit and neglecting subleading corrections, we have

Fsing�T,p� = �u2�d/y2f��u1�u2�−��, � � y1/y2 
 1, �9�

where the functions f��x� apply to the parameter regions in
which �u2
0. Close to the MNP, the transition lines corre-
spond to constant values of the product u1�u2�−� and thus,
since �
1, they are tangent to the line u1=0.

The scaling fields ui are analytic functions of the model
parameters T and p. Using symmetry arguments, Refs.
�36,37� showed that one of the scaling axes is along the N
line, i.e., that the N line is either tangent to the line u1=0 or
to u2=0. Since the N line cannot be tangent to the transition
lines at the MNP and these lines are tangent to u1=0, the first
possibility is excluded. Thus close to the MNP the N line
corresponds to u2=0. Thus we identify �36,37�

u2 = tanh � − 2p + 1. �10�

As for the scaling axis u1=0, ��6−d expansion calculations
predict it �37� to be parallel to the T axis. The extension of
this result to lower dimensions suggests
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u1 = p − p�. �11�

Note that, if Eq. �11� holds, only the scaling field u2 depends
on the temperature T. We may then identify �=1 /y2, and
rewrite Eq. �9� as

Fsing�T,p� = �t�2�f��g�t�−�� , �12�

where t��T−T�� /T�, g� p− p�, and � is the crossover ex-
ponent.

These results give rise to the following predictions for the
FSS behavior around T�, p�. Let us consider a RG invariant
quantity R, such as R��� /L, U4, U22, which are defined in
the Appendix and called phenomenological couplings. In the
FSS limit R obeys the scaling law

R = R�u1Ly1,u2Ly2,�uiL
yi�, i 	 3. �13�

Neglecting the scaling corrections, that is terms vanishing in
the limit L→, very close to the MNP we expect

R = R� + b11u1Ly1 + b21u2Ly2 + ¯ . �14�

which is valid as long as u1Ly1 is small. Along the N line, the
scaling field u2 vanishes, so that we can write

RN = R� + b11u1Ly1 + ¯ , �15�

where the subscript N indicates that R is restricted to the N
line. Let us now consider the derivative of R with respect to
��1 /T. Differentiating Eq. �14�, we obtain

R� = b11u1�L
y1 + b21u2�L

y2 + ¯ . �16�

If Eq. �11� holds, then u1�=0, so that

R� = b21u2�L
y2 + ¯ . �17�

This result gives us a method to verify the conjecture of Ref.
�37�: once y1 has been determined from the scaling behavior
of a RG invariant quantity close to the MNP, it is enough to

check the scaling behavior of R�. If R� scales as L� with �
�y1, the conjecture is confirmed and � provides an estimate
of y2. Along the N line the magnetic susceptibility is ex-
pected to behave as

�N = eL2−��1 + e1u1Ly1 + ¯� . �18�

Let us mention that the general features of the MNP are
expected to be independent of d. In three dimensions they
have been accurately verified in Refs. �42,43�.

III. MONTE CARLO RESULTS

A. Simulation details

In the following we present a FSS analysis of high-
statistics MC data along the N line defined by

� = �N�p� � −
1

2
ln�1 − p

p
� . �19�

We performed MC simulations on square lattices of linear
size L with periodic boundary conditions, for several values
of L, L=6, 8 , 12, 16, 24, 32, 48, and 64. Most simu-
lations were performed close to the MNP, for values of p in
the range 0.8895� p�0.8920, which includes the value pe
=0.889 972. . .. To increase the statistics, we used multispin
coding �details can be found in Ref. �44��.

We use a standard Metropolis algorithm up to L=24,
while for L	32 we supplement the updating method with
the random-exchange technique �45� �see also Sec. 3 in Ref.
�46� for a discussion of the random-exchange method in a
disordered system�. In order to determine MC estimates at p
and �=�N�p�, we consider NT systems at the same value of p
and at inverse temperatures �min��1 , . . . ,�NT

=�N�p�. The
chosen values of � are equally spaced, i.e., �i+1−�i=��,
with a constant �� �typically ��
0.06, 0.04, and 0.03
for L=32, 48, and 64�. The spacing �� is chosen such as to

TABLE I. Parameters of our random-exchange MC runs. Nrun is the number of Metropolis sweeps per
configuration and sample, Ntherm is the corresponding number of Metropolis sweeps discarded for
thermalization.

L p �min NT Acceptance range �%� Nrun /103 Ntherm /103

32 0.8895 0.3228 13 4–56 240 48

32 0.889972 0.3252 13 4–56 240 48

32 0.8905 0.3279 13 4–56 240 48

32 0.8910 0.3305 13 4–57 240 72

32 0.8915 0.3331 13 4–57 240 48

48 0.889972 0.285228 20 4–57 400 80

48 0.8905 0.2879 20 4–57 400 80

48 0.8910 0.2905 20 4–57 400 80

48 0.8915 0.3310 25 13–66 320 64

64 0.889972 0.265228 27 4–57 900 180

64 0.8906 0.268442 27 4–57 600 180

64 0.8909 0.2700 27 4–58 600 300

64 0.8909 0.2700 27 4–58 1200 240

64 0.8912 0.271529 27 4–58 600 240
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have a non-negligible acceptance probability, while �min is
chosen so that thermalization at �=�min is sufficiently fast.
The elementary unit of the algorithm consists in Nex Me-
tropolis sweeps for each configuration followed by an ex-
change move. We consider all pairs of configurations corre-
sponding to nearby temperatures and propose a temperature
exchange with acceptance probability

P = exp���i − �i+i��Ei − Ei+1� , �20�

where Ei is the energy of the system at inverse temperature
�i. In our MC runs we choose Nex=20. In Table I we report
the parameters of our simulations performed with the
random-exchange algorithm: here Nrun is the number of Me-
tropolis sweeps per sample and temperature, while Ntherm is
the corresponding number of Metropolis sweeps discarded
for thermalization. We also report the range of the exchange
probability, which depends on the temperatures �i and �i+1
considered.

For every disorder sample we perform a MC run of Nrun
Metropolis iteration collecting Nmeas measures of the quanti-
ties defined in the Appendix. We used Nmeas=400 for L
�24 and Nmeas=100 for L	32. In order to obtain equili-
brated data, we discard a fraction of the measures which is
determined by using the following procedure. We divide the

measures into NB parts �typically NB=10,20� of length
l=Nmeas /NB. Then, we consider the disorder-averaged sus-
ceptibilities

�b�t� = �1

l
�
i=tl

�t+1�l−1

��i��, t = 0, . . . ,NB − 1. �21�

Starting from random infinite-temperature spin configura-
tions, �b�t� increases with t. When t is sufficiently large,
�b�t� becomes constant within error bars, thus signaling that
thermalization has been reached. We use the susceptibility
because it is a long-range quantity and it is more sensitive to
thermalization. Whenever one determines disorder averages
of functions of thermal averages one should perform a bias
correction; for this purpose we use the results of Ref. �47�.

MC results are reported in Tables II and III. To obtain
small statistical errors, we generate a large number of
samples Ns: Ns=106 in all cases, except for the run with L
=32 and p=0.891, where Ns=4�106. To check the com-
puter programs we used the exact prediction of the energy
density along the N line �38�,

TABLE II. MC data for L=6, 8 , 12, and 16 along the N line. For all runs the number of samples is
Ns=106.

L p R� U4 U22 � R��

6 0.8895 0.9806�8� 1.1316�2� 0.08302�17� 26.172�8� 6.532�6�
0.889972 0.9886�8� 1.1295�2� 0.08176�17� 26.270�8� 6.456�6�
0.8905 0.9979�8� 1.1272�2� 0.08032�17� 26.382�8� 6.371�6�
0.891 1.0068�8� 1.1250�2� 0.07899�17� 26.486�8� 6.290�6�
0.8915 1.0158�8� 1.1229�2� 0.07765�17� 26.590�8� 6.210�6�
0.892 1.0251�8� 1.1207�2� 0.07632�16� 26.695�8� 6.129�6�

8 0.8895 0.9741�7� 1.1327�2� 0.08455�17� 44.150�13� 13.471�11�
0.889972 0.9837�7� 1.1301�2� 0.08301�16� 44.366�13� 13.307�11�
0.8905 0.9945�7� 1.1274�2� 0.08132�16� 44.604�13� 13.126�11�
0.891 1.0049�7� 1.1249�2� 0.07973�16� 44.829�13� 12.953�11�
0.8915 1.0156�7� 1.1223�2� 0.07811�16� 45.054�12� 12.787�11�
0.892 1.0265�8� 1.1198�2� 0.07654�16� 45.278�12� 12.615�11�

12 0.8895 0.9630�7� 1.1350�2� 0.08672�17� 91.98�3� 36.01�3�
0.889972 0.9754�7� 1.1317�2� 0.08464�17� 92.61�3� 35.56�3�
0.8905 0.9893�7� 1.1281�2� 0.08239�17� 93.31�3� 35.02�2�
0.891 1.0030�7� 1.1247�2� 0.08028�16� 93.97�3� 34.52�2�
0.8915 1.0167�8� 1.1214�2� 0.07821�16� 94.63�3� 34.04�2�
0.892 1.0309�8� 1.1182�2� 0.07618�16� 95.29�3� 33.56�2�

16 0.8895 0.9554�7� 1.1373�2� 0.08840�16� 154.69�5� 71.09�4�
0.889972 0.9701�7� 1.1333�2� 0.08587�16� 156.02�5� 70.15�4�
0.8905 0.9870�7� 1.1289�2� 0.08311�16� 157.52�5� 69.11�4�
0.891 1.0033�7� 1.1248�2� 0.08051�16� 158.92�5� 68.10�4�
0.8915 1.0199�7� 1.1208�2� 0.07804�15� 160.31�4� 67.06�4�
0.892 1.0367�8� 1.1170�2� 0.07562�15� 161.68�4� 66.03�4�
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EN�p� =
1

V
��H�TN�p�� = 2 − 4p . �22�

All runs give estimates of EN�p� which are consistent with
Eq. �22�. For example, we obtain EN�p� / �2−4p�
=1.000 01�1� ,1.000 00�1� for L=32, p=0.891 and L
=64, p=0.8909, respectively.

B. Results

MC estimates of the RG invariant quantities R�, U4, and
U22 along the N line are shown in Fig. 2. There is clearly a
crossing point at p
0.891. The raw data already indicate
that p�
 pe=0.889 972. . ., where pe is the value conjectured
in Ref. �17�. Their difference can hardly be explained in
terms of scaling corrections. Indeed, the crossing point
pcross�L ,�� of the data corresponding to lattice sizes L and
�L scales for L→ as

pcross�L,�� − p� � L−y1−�, �23�

where �
0 is the exponent associated with the leading ir-
relevant operator. Since, as we shall see, y1
0.6, the ap-
proach is reasonably fast, so that our data, that correspond to
lattice sizes between 6 and 64, should be able to detect a drift
due to scaling corrections. The very good stability of the
results excludes a delayed approach to pe.

In order to estimate precisely p�, T�, and y1 we perform a
FSS analysis of the phenomenological couplings R��� /L,
U4, U22, and Ud, which are defined in the Appendix and are

generically denoted by R. Since we vary p and � along the N
line, close to the MNP we expect

R = fR��p − p��Ly1� , �24�

with fR�0�=R�. This functional form relies on the property
that u2=0 along the N line. Since our data are sufficiently
close to the MNP, the product �p− p��Ly1 is small. We can
thus expand fR�x� in powers of x. Thus we fit the numerical
data to

R = R� + �
n=1

nmax

an�p − p��nLny1, �25�

keeping R�, the coefficients �an, p�, and y1 as free param-
eters. Here we neglect scaling corrections. To monitor their
role, we repeat the fits several times, each time only includ-
ing data satisfying L	Lmin. Fits with nmax=1 have a large
�2 /DOF �DOF is the number of degrees of freedom of the
fit�, indicating that the range of values of p we are consider-
ing is too large to allow for a linear approximation of the
scaling function fR�x�. Fits with nmax=2 have instead a good
�2 for Lmin	6 �U4�, 12 �R��, and 16 �U22 and Ud�. We also
perform fits with nmax=3 but we do not observe significant
differences: for Ud and Lmin=6,12 we obtain �2 /DOF
=2148 /39,34 /27 with nmax=2, and 2147/38,34/26 for nmax
=3. Clearly, a parabolic approximation is fully adequate. Be-
side fitting separately each observable, we also perform com-
bined fits of three different phenomenological couplings. The
results are reported in Table IV. In the case of U22, U4, and

TABLE III. MC data for L=24, 32, 48, and 64 along the N line. The number of samples is Ns=106,
except for the run with L=32 and p=0.891. In this case Ns=4�106.

L p R� U4 U22 � R��

24 0.8895 0.9423�7� 1.1411�2� 0.09071�18� 321.10�10� 182.16�12�
0.889972 0.9615�7� 1.1356�2� 0.08730�17� 324.95�9� 179.74�11�
0.8905 0.9831�7� 1.1299�2� 0.08373�16� 329.20�9� 176.77�11�
0.891 1.0042�7� 1.1247�2� 0.08054�16� 333.15�9� 173.76�11�
0.8915 1.0265�8� 1.1194�2� 0.07724�15� 337.14�10� 170.92�11�
0.892 1.0486�8� 1.1145�2� 0.07412�15� 341.06�9� 168.12�10�

32 0.8895 0.9319�6� 1.1443�2� 0.09279�18� 538.29�16� 351.4�3�
0.889972 0.9533�7� 1.1380�2� 0.08878�18� 546.13�17� 346.3�3�
0.8905 0.9808�7� 1.1306�2� 0.08423�17� 555.14�17� 334.0�3�
0.891 1.0058�4� 1.12439�10� 0.080358�8� 563.43�8� 334.02�14�
0.8915 1.0315�8� 1.1184�2� 0.07651�16� 571.52�16� 328.6�3�
0.892 1.0587�8� 1.11249�18� 0.07292�15� 579.70�16� 322.2�2�

48 0.889972 0.9430�7� 1.1413�2� 0.09079�17� 1134.1�3� 864.7�8�
0.8905 0.9758�7� 1.1321�2� 0.08498�17� 1158.4�3� 847.8�8�
0.891 1.0088�7� 1.1237�2� 0.07984�16� 1181.8�3� 830.2�7�
0.8915 1.0438�8� 1.11581�18� 0.07487�15� 1204.9�3� 814.2�7�

64 0.889972 0.9311�6� 1.1449�2� 0.09308�17� 1900.0�6� 1641.3�1.6�
0.8906 0.9792�7� 1.1313�2� 0.08460�17� 1961.0�6� 1596.9�1.6�
0.8909 1.0037�7� 1.1252�2� 0.08072�17� 1990.3�6� 1580.2�1.5�
0.8912 1.0286�8� 1.1194�2� 0.07711�16� 2019.1�6� 1560.2�1.6�
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R� all estimates of p� show a systematic downward trend
with Lmin, with 0.890 80� p��0.890 83 for Lmin=32. Fits of
Ud �note that this quantity is statistically more precise than
the other ones, which explains the somewhat larger �2 /DOF
of the fits� show instead a different behavior and suggest a
somewhat larger value of p�, p�
0.890 87. Similar trends
are observed in the estimates of y1, which in most of the
cases increases with Lmin and varies essentially in the range
0.65�y1�0.67 with a statistical error of �0.01–0.02.

These tiny discrepancies indicate that scaling corrections
are not negligible if compared with our small statistical er-

rors. In order to estimate their quantitative role, we also per-
form fits in which scaling corrections are taken into account.
Thus we fit the MC data to

R = R� + �
n=1

nmax

an�p − p��nLny1 + L−� �
k=0

kmax

bk�p − p��kLky1.

�26�

Results for kmax=0 and 1 have both a good �2 /DOF, even for
Lmin=6. In the following we present results corresponding to
kmax=1, since this choice allows us to take into account the
scaling corrections that affect the determination of both p�

and y1. The correction-to-scaling exponent � is not known
and thus we keep it as a free parameter. Our results are
reported in Table V. Because of the large number of param-
eters this fit gives stable results only for Lmin=6,8 �for U4
this is not even the case�. For larger values of Lmin errors are
so large to make the results meaningless. The results are fully
consistent. First of all, they predict ��1. Thus corrections
to scaling decay reasonably fast, indicating that the system-
atic error should be reasonably estimated by considering data
in our range 6�L�64. Second, fits that involve Ud give
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FIG. 2. �Color online� MC data of U4, U22, and R��� /L vs p.
The dashed lines connecting the data at given L are drawn to guide
the eye. The dotted vertical line corresponds to the conjectured �17�
MNP location p= pe=0.889 972.

TABLE IV. Estimates of p� and y1 obtained by performing a fit
to Eq. �25� with nmax=2. DOF is the number of degrees of freedom
in the fit and Lmin is the minimum lattice size included in the fit.

Lmin �2 /DOF p� y1

Ud 12 34/27 0.890860�7� 0.658�7�
16 19/21 0.890877�8� 0.656�9�
24 17/15 0.890881�11� 0.647�11�
32 14/9 0.890871�14� 0.664�16�

U22 12 41/27 0.890895�12� 0.639�11�
16 11/21 0.890857�13� 0.647�13�
24 6/15 0.890831�17� 0.663�18�
32 3/9 0.890813�21� 0.672�25�

U4 12 19/27 0.890882�9� 0.647�9�
16 9/21 0.890865�10� 0.650�10�
24 6/15 0.890850�13� 0.656�14�
32 3/9 0.890834�17� 0.669�19�

R� 12 21/27 0.890835�8� 0.647�8�
16 12/21 0.890820�9� 0.650�9�
24 7/15 0.890805�12� 0.653�12�
32 5/9 0.890795�15� 0.664�17�

R�,U4,U22 12 107/85 0.890864�5� 0.646�5�
16 44/67 0.890844�6� 0.650�6�
24 27/49 0.890826�8� 0.656�8�
32 14/31 0.890812�10� 0.668�11�

R�,U4,Ud 12 92/85 0.890858�4� 0.651�4�
16 64/67 0.890855�5� 0.653�5�
24 54/49 0.890847�7� 0.652�7�
32 37/31 0.890836�9� 0.665�10�
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estimates of � that are significantly larger. This is consistent
with the results reported in Table V: fits involving Ud show a
small dependence on Lmin, suggesting that Ud is less affected
by scaling corrections. The estimates of p� obtained in fits of
� /L and U22 show a trend that is opposite to that observed in
fits without corrections, indicating that the correct value for
p� belongs to the range of values that occur in the two types
of fits: values smaller than 0.890 70 are not consistent with
our data. To quote a final result, let us note that the fits with
Lmin=8 reported in Table V give �including the statistical
error� 0.890 74� p��0.890 89. A conservative estimate is
therefore

p� = 0.890 81�7� . �27�

This result is fully consistent with those obtained in the fits
without scaling corrections. Using Eq. �3� we obtain

�� = 1.0495�4�, T� = 0.9528�4� . �28�

Note that the conjectured value �17� pe=0.889 972. . . is ex-
cluded, the difference p�− pe=0.000 84�7� corresponding to
12 error bars.

Let us finally estimate y1. Fits with scaling corrections
give results that decrease with Lmin, while fits without scaling
corrections give estimates that have the opposite trend. Com-
paring all results, we expect 0.64�y1�0.67, so that we ar-
rive at the final estimate

y1 = 0.655�15� . �29�

The fits that we have reported also allow us to estimate the
critical-point value R� of the phenomenological couplings.
We obtain:

R�
� = 0.996�2� , �30�

U4
� = 1.1264�6� , �31�

U22
� = 0.0817�5� , �32�

Ud
� = 1.0447�3� . �33�

Of course, the estimate of Ud
� is consistent with the relation

Ud
�=U4

�−U22
� . Note that these results are not very much dif-

ferent from those of the pure 2D Ising values that apply
along the PF line from the pure Ising point at p=1 to the
MNP �48�: R�

�=0.905 048 829 2�4�, U4
�=Ud

�=1.167 923�5�,
U22

� =0. In particular, the estimate �32� of U22
� is quite small,

indicating that the violations of self-averaging are small.
Let us now consider the derivatives R� of the phenomeno-

logical couplings. Close to the MNP, R� is expected to be-
have as

R� = L�fR���p − p��Ly1� , �34�

where we have used the fact that along the Nishimori line
u2=0. If Eq. �11� holds �37�, we have additionally �=y2. To
determine � we perform analyses analogous to those used
before to determine p� and y1. We expand fR��x� in powers of
x and thus fit R� to

ln R� = � ln L + �
n=0

nmax

an�p − p��nLny1. �35�

We always fix y1 to the value �29� and p� to the value �27�,
including in the final error the variation of y1 and p� within
one error bar. As in the fits of R, we check the role of nmax. A
significant improvement in the quality of the fit is observed
by changing nmax from 1 to 2, while no significant change is
obtained by increasing it to 3. Therefore we fix nmax=2.

The results are reported in Table VI. They are very stable
and show a very small dependence on Lmin, of the order of
the statistical error. As a final result we quote �=0.250�2�.
This result is significantly smaller than y1 and thus confirms
the argument of Ref. �37�. Therefore � should be identified
with y2, so that

y2 = 0.250�2�, � �
1

y2
= 4.00�3� . �36�

The corresponding crossover exponent is

TABLE V. Estimates of p�, y1, and � obtained by performing a fit to Eq. �26� with nmax=2 and kmax

=1. DOF is the number of degrees of freedom in the fit and Lmin is the minimum lattice size included in the
fit.

Lmin �2 /DOF p� y1 �

� /L 6 9.9/36 0.89077�2� 0.663�16� 1.18�31�
8 7.3/30 0.89079�2� 0.654�13� 1.95�68�

U22 6 7.6/36 0.89077�3� 0.663�21� 1.23�25�
8 7.1/30 0.89078�4� 0.660�23� 1.45�46�

Ud 6 31/36 0.89090�1� 0.655�8� 2.67�16�
8 20/30 0.89088�1� 0.654�8� 4.15�68�

� /L,U4,U22 6 77/114 0.89082�1� 0.657�8� 1.59�17�
8 47/96 0.89081�1� 0.657�10� 1.64�32�

� /L,U4,Ud 6 128/114 0.890868�5� 0.652�5� 3.04�12�
8 81/96 0.890860�5� 0.651�5� 5.25�71�
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� �
y1

y2
= 2.62�6� . �37�

The same analysis used to estimate y2 can be employed to
determine �. Instead of �, we consider

Z � �/�2 � L−�, �38�

which has smaller statistical errors. We fit Z to

ln Z = − � ln L + �
n=0

nmax

an�p − p��nLny1. �39�

As before, we fix y1 and p�, set nmax=2, and repeat the fit
several times, each time considering only data satisfying L
	Lmin. The final results are reported in Table VI. A good �2

is obtained only for Lmin	16. The corresponding fits give
�
0.175–0.180 with a slight upward trend. This effect may
be real and due to scaling corrections. Therefore we also fit
ln Z to

ln Z = − � ln L + �
n=0

nmax

an�p − p��nLny1

+ L−� �
k=0

kmax

ak�p − p��kLky1, �40�

fixing y1 and p�, and keeping � as a free parameter. For
nmax=2 and kmax=1, we obtain a good �2 for any Lmin	6.
The corresponding estimates of � are �=0.182�10� �Lmin
=6� and �=0.181�10� �Lmin=8�. The central estimates are
quite close to those obtained in fits without scaling correc-
tions, indicating that scaling corrections are small. We take
as our final estimate

� = 0.180�5� , �41�

which includes all results without scaling corrections and is
consistent with the fits in which scaling corrections are taken
into account.

IV. CONCLUSIONS

In this paper we investigated the critical behavior of the
square-lattice �J Ising model close to the MNP. Our main
results are the following.

�i� We obtained an accurate estimate of the location of the
MNP: p�=0.890 81�7�, T�=0.9528�4�. The conjectured
value pe=0.889 972. . . put forward in Ref. �17� is a very
good approximation, but it is not exact: p�− pe
=0.000 84�7�.

�ii� We computed the RG dimensions of the relevant op-
erators at the MNP, obtaining y1=0.655�15� and y2
=0.250�2�. It is tempting to conjecture that y2=1 /4 exactly.
Note also that y1 is consistent with 2/3, though in this case
the precision of the result is not good enough to put this
conjecture on firm grounds. The above estimates of the RG
dimensions give ��1 /y2=4.00�3� and ��y1 /y2=2.62�6�.

�iii� We computed the critical exponent � that controls the
critical behavior of the magnetic correlations, obtaining �
=0.180�5�.

Our estimate of p� is significantly more precise than those
obtained in previous works. By using transfer-matrix meth-
ods Refs. �16,18,20,28� obtained p�=0.8907�2�, 0.8906�2�,
0.8905�5�, 0.889�2�, respectively. We also mention the re-
sults p�=0.8872�8� obtained by means of an off-equilibrium
MC simulation �21�, and p�=0.886�3� from the analysis of
high-temperature expansions �25�. Concerning the critical
exponents at the MNP, we mention the square-lattice results
y1=0.676�14�, 0.667�13�, 0.752�17�, 0.75�7�, 0.76�5�, re-
spectively, from Refs. �10,16,18,2,25�. The estimate �11� y1
=0.671�9� has been obtained on the triangular and honey-
comb lattices. Moreover, we mention the result �10� y1
=0.658�13� obtained from a model with Gaussian distributed
couplings. The most recent results are clearly consistent with
our estimate. As for y2 �or equivalently �=1 /y2�, Refs.
�10,16,2� report �
3, �=4.0�5�, and �=2.4�3�, which are
not far from our much more precise result �but the old result
of Ref. �2� is clearly inconsistent with the quoted errors�.
Finally, we quote �=0.183�3� �16�, and �
=0.1848�3� ,0.1818�2�, �statistical errors only� obtained in
Ref. �10�, respectively, for the �J model and for the model
with Gaussian distributed couplings. They are fully consis-
tent with our result.

It is interesting to compare the phase diagram of the two-
dimensional �J Ising model, shown in Fig. 1, with that of
the three-dimensional �J Ising model sketched in Fig. 3.
Recent high-statistics numerical studies of the �J Ising
model on a simple cubic lattice have shown that: �i� the
transitions along the PF line belong to the 3D randomly di-
lute Ising �RDI� universality class �44�, with critical expo-
nents �47� �=0.683�2� and �=0.036�1�; �ii� this line extends
up to a magnetic-glassy multicritical point �MGP� located
along the N line, at �42� p�=0.768 20�4�, where the relevant
RG dimensions are given by y1=1.02�5� and y2=0.61�2�
�corresponding to the thermal and crossover exponents �
=1.64�5� and �=1.67�10��; �iii� the critical behavior along
the transition line separating the paramagnetic and the spin-
glass phase is independent of p and belongs to the Ising
spin-glass universality class �49� with the correlation-length
critical exponent �=2.53�8�.

TABLE VI. Estimates of the exponent �=y2 and �=� obtained
by performing a fit to Eq. �35� with nmax=2.

Lmin �2 /DOF �

R�� 8 20/29 0.252�2�
12 16/24 0.251�2�
16 13/19 0.250�2�
24 12/14 0.249�3�

U4� 8 19/29 0.250�1�
12 17/24 0.249�1�
16 14/19 0.249�1�
24 13/14 0.250�2�

Z 8 147/29 0.173�3�
12 38/24 0.175�3�
16 21/19 0.176�4�
24 11/14 0.178�5�
32 6/9 0.179�5�
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APPENDIX: NOTATIONS

The two-point correlation function is defined as

G�x� � ���0�x�� , �A1�

where the angular and the square brackets indicate, respec-
tively, the thermal average and the quenched average over
disorder. We define the magnetic susceptibility ���xG�x�
and the correlation length �,

�2 �
G̃�0� − G̃�qmin�

q̂min
2 G̃�qmin�

, �A2�

where qmin��2� /L ,0�, q̂�2 sin q /2, and G̃�q� is the Fou-
rier transform of G�x�. We also consider quantities that are

invariant under RG transformations in the critical limit. Be-
sides the ratio

R� � �/L , �A3�

we consider the quartic cumulants

U4 �
��4�
��2�2 ,

U22 �
��2

2� − ��2�2

��2�2 ,

Ud � U4 − U22,

where

�k � ���
x

�x�k� . �A4�

The quantities R�, U4, U22, and Ud are also called phenom-
enological couplings. Finally, we consider the derivatives

R�� �
dR�

d�
, U4� �

dU4

d�
, �A5�

which can be computed by measuring appropriate expecta-
tion values at fixed � and p.

�1� S. F. Edwards and P. W. Anderson, J. Phys. F: Met. Phys. 5,
965 �1975�.

�2� S. Cho and M. P. A. Fisher, Phys. Rev. B 55, 1025 �1997�.
�3� I. A. Gruzberg, N. Read, and A. W. W. Ludwig, Phys. Rev. B

63, 104422 �2001�.
�4� J. T. Chalker, N. Read, V. Kagalovsky, B. Horovitz, Y. Avishai,

and A. W. W. Ludwig, Phys. Rev. B 65, 012506 �2001�.
�5� C. Wang, J. Harrington, and J. Preskill, Ann. Phys. �N.Y.� 303,

31 �2003�.
�6� A. Kitaev, Ann. Phys. �N.Y.� 303, 2 �2003�.
�7� E. Dennis, A. Kitaev, A. Landahl, and J. Preskill, J. Math.

Phys. 43, 4452 �2002�.
�8� H. Nishimori, Statistical Physics of Spin Glasses and Informa-

tion Processing: An Introduction �Oxford University Press,
Oxford, 2001�.

�9� H. Nishimori, J. Stat. Phys. 126, 977 �2007�.
�10� M. Picco, A. Honecker, and P. Pujol, J. Stat. Mech.: Theory

Exp. �2006� P09006.
�11� S. L. A. de Queiroz, Phys. Rev. B 73, 064410 �2006�.
�12� C. Amoruso and A. K. Hartmann, Phys. Rev. B 70, 134425

�2004�.
�13� N. Kawashima and H. Rieger, in Frustrated Spin Systems, ed-

ited by H. T. Diep �World Scientific, Singapore, 2004�.
�14� S. L. A. de Queiroz and R. B. Stinchcombe, Phys. Rev. B 68,

144414 �2003�.

�15� J. M. Maillard, K. Nemoto, and H. Nishimori, J. Phys. A 36,
9799 �2003�.

�16� F. Merz and J. T. Chalker, Phys. Rev. B 65, 054425 �2002�.
�17� H. Nishimori and K. Nemoto, J. Phys. Soc. Jpn. 71, 1198

�2002�.
�18� A. Honecker, M. Picco, and P. Pujol, Phys. Rev. Lett. 87,

047201 �2001�.
�19� F. D. Nobre, Phys. Rev. E 64, 046108 �2001�.
�20� F. D. A. Aarão Reis, S. L. A. de Queiroz, and R. R. dos Santos,

Phys. Rev. B 60, 6740 �1999�.
�21� Y. Ozeki and N. Ito, J. Phys. A 31, 5451 �1998�.
�22� J. A. Blackman, J. R. Goncalves, and J. Poulter, Phys. Rev. E

58, 1502 �1998�.
�23� G. Migliorini and A. N. Berker, Phys. Rev. B 57, 426 �1998�.
�24� N. Kawashima and H. Rieger, Europhys. Lett. 39, 85 �1997�.
�25� R. R. P. Singh and J. Adler, Phys. Rev. B 54, 364 �1996�.
�26� Y. Ozeki and H. Nishimori, J. Phys. A 26, 3399 �1993�.
�27� H. Kitatani, J. Phys. Soc. Jpn. 61, 4049 �1992�.
�28� Y. Ozeki and H. Nishimori, J. Phys. Soc. Jpn. 56, 3265 �1987�.
�29� H. Nishimori, J. Phys. Soc. Jpn. 55, 3305 �1986�.
�30� B. N. Shalaev, Sov. Phys. Solid State 26, 1811 �1984�.
�31� R. Shankar Phys. Rev. Lett. 58, 2466 �1987�; 59, 380�E�

�1987�; A. W. W. Ludwig, ibid. 61, 2388 �1988�; H. A. Cec-
catto and C. Naon, ibid. 61, 2389 �1988�.

�32� H. G. Ballesteros, L. A. Fernández, V. Martín-Mayor, A.

0

Is

T

1/21 − p

para

ferro

MGP

glassy

N line
RDI

FIG. 3. �Color online� Phase diagram of the 3D �J Ising model
in the T-p plane.

MULTICRITICAL NISHIMORI POINT IN THE PHASE… PHYSICAL REVIEW E 77, 051115 �2008�

051115-9



Muñoz Sudupe, G. Parisi, and J. J. Ruiz-Lorenzo, J. Phys. A
30, 8379 �1997�.

�33� M. Hasenbusch, F. Parisen Toldin, A. Pelissetto, and E. Vicari,
e-print arXiv:0804.2788.

�34� A. W. W. Ludwig and J. L. Cardy, Nucl. Phys. B 285, 687
�1987�; J. L. Cardy J. Phys. A 19, L1093 �1986�; 20, 5039�E�
�1987�.

�35� A. Georges, D. Hansel, P. Le Doussal, and J. Bouchaud, J.
Phys. �Paris� 46, 1827 �1985�.

�36� P. Le Doussal and A. B. Harris, Phys. Rev. Lett. 61, 625
�1988�.

�37� P. Le Doussal and A. B. Harris, Phys. Rev. B 40, 9249 �1989�.
�38� H. Nishimori, Prog. Theor. Phys. 66, 1169 �1981�.
�39� T. Jörg, J. Lukic, E. Marinari, and O. C. Martin, Phys. Rev.

Lett. 96, 237205 �2006�; C. Amoruso, E. Marinari, O. C. Mar-
tin, and A. Pagnani, ibid. 91, 087201 �2003�.

�40� M. Ohzeki, H. Nishimori, and A. N. Berker, e-print
arXiv:0802.2760.

�41� M. Hinczewski and A. N. Berker, Phys. Rev. B 72, 144402

�2005�.
�42� M. Hasenbusch, F. P. Toldin, A. Pelissetto, and E. Vicari, Phys.

Rev. B 76, 184202 �2007�.
�43� R. R. P. Singh, Phys. Rev. Lett. 67, 899 �1991�.
�44� M. Hasenbusch, F. P. Toldin, A. Pelissetto, and E. Vicari, Phys.

Rev. B 76, 094402 �2007�.
�45� C. J. Geyer, in Computer Science and Statistics: Proc. of the

23rd Symposium on the Interface, edited by E. M. Keramidas
�Interface Foundation, Fairfax Station, 1991�, p. 156; K. Huku-
shima and K. Nemoto, J. Phys. Soc. Jpn. 65, 1604 �1996�.

�46� F. Parisen Toldin, A. Pelissetto, and E. Vicari, J. Stat. Mech.:
Theory Exp. �2006� P06002.

�47� M. Hasenbusch, F. Parisen Toldin, A. Pelissetto, and E. Vicari,
J. Stat. Mech.: Theory Exp. �2007� P02016.

�48� J. Salas and A. D. Sokal, J. Stat. Phys. 98, 551 �2000�.
�49� M. Hasenbusch, A. Pelissetto, and E. Vicari, J. Stat. Mech.:

Theory Exp. �2008� L02001.

HASENBUSCH et al. PHYSICAL REVIEW E 77, 051115 �2008�

051115-10


